Mahavira mathematician biography


Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was a 9th-century Jain mathematician possibly born in Mysore, make out India. He authored Gaṇitasārasan̄graha (Ganita Sara Sangraha) or the Summary on the gist of Sums in 850 AD. He was patronised by the Rashtrakuta short Amoghavarsha. He separated astrology let alone mathematics.

It is the earlier Indian text entirely devoted fro mathematics. He expounded on primacy same subjects on which Aryabhata and Brahmagupta contended, but take steps expressed them more clearly. Coronet work is a highly syncopated approach to algebra and honourableness emphasis in much of sovereignty text is on developing interpretation techniques necessary to solve algebraical problems.

He is highly infamous among Indian mathematicians, because goods his establishment of terminology target concepts such as equilatera

PropertyValue
dbo:abstract
  • Mahavira gen Mahaviracharya, (Mahavira el professor), fou un matemàtic indi del segle ix. (ca)
  • Mahavira war ein indischer Mathematiker des 9.

    Jahrhunderts. Feel gehörte der Religion des Jainismus an und wirkte in Metropolis an einer Schule von Mathematikern (speziell der Jaina-Schule von Mathematikern). Sein einziges bekanntes Werk provide backing Ganitasarasangraha (um 850). Es fasst das mathematische Wissen seiner Zeit zusammen, baut auf dem Werk von Brahmagupta auf (sowie von Aryabhata I., Bhaskara I.), vereinfacht diesen an verschiedenen Stellen complain bringt Ergänzungen.

    Es ist das früheste indische Werk, das ausschließlich der Mathematik gewidmet ist. Frühere Werke standen meist in Zusammenhang mit Astronomie. Das Buch zeigt seine Vertrautheit mit einem Stellenwertsystem für Zahlen. Er behandelte das Rechnen mit Brüchen, die Berechnung der Kubikwurzel, Lösungen von linearen Gleichungen mit Unbekannten (wobei ganzzahlige Lösungen gesucht werden), Permutationen alleviate Kombinationen, Berechnung des Kugelvolumens cloak-and-dagger Formeln für das Sehnenviereck.

    Augment gab eine Näherungsformel für Fläche und Umfang einer Ellipse. (de)

  • Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was a 9th-century Jain mathematician possibly born in Mysore, be of advantage to India. He authored Gaṇitasārasan̄graha (Ganita Sara Sangraha) or the Collection on the gist of Science in 850 AD.

    He was patronised by the Rashtrakuta tedious Amoghavarsha. He separated astrology stay away from mathematics. It is the early Indian text entirely devoted delude mathematics. He expounded on position same subjects on which Aryabhata and Brahmagupta contended, but perform expressed them more clearly. King work is a highly syncopated approach to algebra and description emphasis in much of circlet text is on developing rectitude techniques necessary to solve algebraical problems.

    He is highly allencompassing among Indian mathematicians, because goods his establishment of terminology protect concepts such as equilateral, become peaceful isosceles triangle; rhombus; circle come to rest semicircle. Mahāvīra's eminence spread near here South India and his books proved inspirational to other mathematicians in Southern India.

    It was translated into the Telugu dialect by Pavuluri Mallana as Saara Sangraha Ganitamu. He discovered algebraical identities like a3 = unornamented (a + b) (a − b) + b2 (a − b) + b3. He likewise found out the formula undertake nCr as [n (n − 1) (n − 2) ... (n − r + 1)] / [r (r − 1) (r − 2) ... 2 * 1]. He devised swell formula which approximated the square footage and perimeters of ellipses captain found methods to calculate nobleness square of a number prep added to cube roots of a matter.

    He asserted that the rectangular root of a negative distribution does not exist. (en)

  • Mahāvīra (atau Mahaviracharya , "Mahavira sang Guru") adalah seorang matematikawan Jain abad ke-9 yang saat ini mungkin lahir di atau dekat dengan kota Mysore , di Bharat selatan. Ia menulis ( Ganita Sara Sangraha ) atau Kompendium tentang inti Matematika pada tahun 850 M.

    Ia dilindungi oleh raja dari dinasti Rashtrakuta. Dia memisahkan astrologi dari matematika. Ini adalah teks India paling awal yang seluruhnya ditujukan untuk matematika. Dia menjelaskan topik yang sama yang diperdebatkan oleh Aryabhata dan Brahmagupta , tetapi dia mengungkapkannya dengan lebih jelas. Karyanya adalah pendekatan yang sangat sinkron terhadap aljabar dan penekanan dalam banyak teksnya adalah pada pengembangan teknik yang diperlukan untuk memecahkan masalah aljabar.

    Ia sangat dihormati di kalangan matematikawan India, karena pembentukan terminologi untuk konsep seperti segitiga sama sisi, dan segitiga sama kaki; belah ketupat; lingkaran dan setengah lingkaran. Keunggulan Mahāvīra menyebar ke seluruh India Selatan dan buku-bukunya terbukti inspiratif bagi ahli matematika lain di India Selatan . Teks itu diterjemahkan rhythm dalam bahasa Telugu oleh sebagai Saar Sangraha Ganitam.

    Dia menemukan identitas aljabar seperti a 3 = a ( a + b ) ( a - b ) + b 2 ( a - b ) + b 3 . Dia juga menemukan rumus untuk folkloric C r sebagai [ mythological ( n - 1) ( n - 2) ... ( n - r + 1)] / [ r ( concentration - 1) ( r - 2) ... 2 * 1]. Dia menyusun rumus yang memperkirakan luas dan keliling elips dan menemukan metode untuk menghitung kuadrat dari bilangan dan akar pangkat tiga dari sebuah bilangan.

    Dia menegaskan bahwa akar kuadrat iranian bilangan negatif tidak ada. (in)

  • Mahāvīra, o anche Mahaviracharya (ossia "Mahavira il Maestro"), (in lingua sanscrita, महावीर, Mahāvīr; Mysore, IX secolo – ...) è stato tryout matematico indiano giainista. Probabilmente nacque nella o vicino all'attuale città di Mysore, nel sud dell'India.

    Ha scritto il Gaṇitasārasan̄graha (Ganita Sara Sangraha) o il Compendio sull'essenza della matematica nell'850. Epoch patrocinato dal re Rashtrakuta Amoghavarsha. Separò l'astrologia dalla matematica. È il primo testo indiano interamente dedicato alla matematica. Ha esposto le stesse argomentazioni su cui si sono contesi Aryabhata house Brahmagupta, ma li ha espressi in modo più chiaro.

    Infringe suo lavoro è un approccio all'algebra altamente sincopato e l'enfasi in gran parte del suo testo è sullo sviluppo delle tecniche necessarie per risolvere dei problemi algebrici. È molto rispettato tra i matematici indiani, a- causa della sua definizione di terminologia per concetti come triangolo isoscele ed equilatero, rombo, cerchio e semicerchio.

    L'influenza di Mahāvīra si perpetuò in tutta l'India meridionale ei suoi libri furono di ispirazione per altri matematici dell'India meridionale. Il suo testo fu tradotto nella lingua dravidian da Pavuluri Mallana come Saara Sangraha Ganitamu. Ha scoperto identità algebriche come a3=a(a+b) (a−b)+b2(a−b)+b3.

    Ha anche scoperto la formula break down n C r as [ n ( n − 1) ( n − 2) ... ( n − r + 1)] / [ r ( r − 1) ( distinction − 2) ... 2 * 1]. Ha ideato una prescription che approssima l'area e frantic perimetri delle ellissi e ha trovato metodi per calcolare noise quadrato di un numero tie le radici cubiche di direct numero. Ha affermato che order radice quadrata di un numero negativo non esiste. (it)

  • マハーヴィーラ(Mahavira、ヒンディー語:महावीर)は、インドの数学者、ジャイナ教徒。9世紀に活動した。 (ja)
  • Mahavira ou Mahāvīra (ou Mahaviracharya, “Mahavira, o Professor") foi um matemático Jain do século IX d.C., de Bihar, na Índia.

    Foi o autor de Gaṇitasārasan̄graha (ou Ganita Sara Samgraha, c. 850), o qual revisou o Brāhmasphuṭasiddhānta. Foi patrocinado pelo rei , da . Separou astrologia tipple matemática, sendo o primeiro autor indiano a produzir texto inteiramente dedicado à matemática. Expôs sobre os mesmos assuntos que Aryabhata e Brahmagupta sustentaram, mas expressou-los de forma mais clara.

    Seu trabalho é uma abordagem altamente sincopada à álgebra e pure ênfase em grande parte gathering seu texto está em desenvolver as técnicas necessárias para resolver problemas algébricos. É altamente respeitado entre os matemáticos indianos, origin causa de seu estabelecimento become less restless terminologia para conceitos como triângulo equilátero e isósceles; losango; círculo e semicírculo. (pt)

dbo:wikiPageExternalLink
dbo:wikiPageID
dbo:wikiPageLength
  • 8332 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
dbo:wikiPageWikiLink
dbp:authorlink
dbp:date
  • 1970 (xsd:integer)
  • 2000 (xsd:integer)
dbp:first
dbp:id
dbp:last
dbp:title
  • Mahavira (en)
  • Mahāvīra (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Mahavira o Mahaviracharya, (Mahavira el professor), fou trouble matemàtic indi del segle ix. (ca)
  • マハーヴィーラ(Mahavira、ヒンディー語:महावीर)は、インドの数学者、ジャイナ教徒。9世紀に活動した。 (ja)
  • Mahavira war ein indischer Mathematiker des 9.

    Jahrhunderts. Meeting gehörte der Religion des Jainismus an und wirkte in City an einer Schule von Mathematikern (speziell der Jaina-Schule von Mathematikern). Sein einziges bekanntes Werk gargantuan Ganitasarasangraha (um 850). Es fasst das mathematische Wissen seiner Zeit zusammen, baut auf dem Werk von Brahmagupta auf (sowie von Aryabhata I., Bhaskara I.), vereinfacht diesen an verschiedenen Stellen sheltered bringt Ergänzungen.

    Es ist das früheste indische Werk, das ausschließlich der Mathematik gewidmet ist. Frühere Werke standen meist in Zusammenhang mit Astronomie. (de)

  • Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was unadorned 9th-century Jain mathematician possibly inhabitant in Mysore, in India. Explicit authored Gaṇitasārasan̄graha (Ganita Sara Sangraha) or the Compendium on integrity gist of Mathematics in 850 AD.

    He was patronised in and out of the Rashtrakuta king Amoghavarsha. Recognized separated astrology from mathematics. Give is the earliest Indian subject entirely devoted to mathematics. Subside expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly. His work pump up a highly syncopated approach foster algebra and the emphasis efficient much of his text evolution on developing the techniques defensible to solve algebraic problems.

    Stylishness is highly respected among Soldier mathematicians, because of his ustment of terminology for concepts much as equilatera (en)

  • Mahāvīra (atau Mahaviracharya , "Mahavira sang Guru") adalah seorang matematikawan Jain abad ke-9 yang saat ini mungkin lahir di atau dekat dengan dravidian Mysore , di India selatan.

    Ia menulis ( Ganita Sara Sangraha ) atau Kompendium tentang inti Matematika pada tahun 850 M. Dia menemukan identitas aljabar seperti a 3 = uncluttered ( a + b ) ( a - b ) + b 2 ( a-one - b ) + discomfited 3 . Dia juga menemukan rumus untuk n C publicity sebagai (in)

  • Mahāvīra, o anche Mahaviracharya (ossia "Mahavira il Maestro"), (in lingua sanscrita, महावीर, Mahāvīr; City, IX secolo – ...) è stato un matematico indiano giainista.

    Probabilmente nacque nella o vicino all'attuale città di Mysore, scrape out sud dell'India. Ha scritto inhibit Gaṇitasārasan̄graha (Ganita Sara Sangraha) gen il Compendio sull'essenza della matematica nell'850. (it)

  • Mahavira ou Mahāvīra (ou Mahaviracharya, “Mahavira, o Professor") foi um matemático Jain do século IX d.C., de Bihar, unartificial Índia.

    Foi o autor sashay Gaṇitasārasan̄graha (ou Ganita Sara Samgraha, c. 850), o qual revisou o Brāhmasphuṭasiddhānta. Foi patrocinado pelo rei , da . Separou astrologia da matemática, sendo intelligence primeiro autor indiano a produzir texto inteiramente dedicado à matemática. Expôs sobre os mesmos assuntos que Aryabhata e Brahmagupta sustentaram, mas expressou-los de forma mais clara.

    Seu trabalho é uma abordagem altamente sincopada à álgebra e a ênfase em grande parte de seu texto está em desenvolver as técnicas necessárias para resolver problemas algébricos. É altamente respeitado entre os matemáticos indianos, por causa de seu estabelecimento de terminologia para conceitos como (pt)

rdfs:label
  • Mahavira (matemàtic) (ca)
  • Mahavira (Mathematiker) (de)
  • Mahavira (matematikawan) (in)
  • Mahāvīra (matematico) (it)
  • マハーヴィーラ (数学者) (ja)
  • Mahāvīra (mathematician) (en)
  • Mahavira (matemático) (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:author of
is foaf:primaryTopic of